

Neural networks in gravitational-wave astronomy: The rigorous approach

Alvin Chua JPL-Caltech

JGRG 29 Kobe University, Japan 28 November 2019

Why the rigorous approach?

- Traditional approach to GW science is hard
- Forward problem: Parameters → expected data
 - Template models: Time/frequency detector response
 - Noise models: PSD, transients
- Inverse problem: Data → inferred parameters
 - Point estimates: MLE (overlap maximization)
 - Credible regions: Bayesian posteriors

$$\theta \mapsto h$$

$$\begin{array}{c} h + n \mapsto \theta \\ h + n \mapsto p(\theta) \end{array}$$

Why the rigorous approach?

- Traditional approach to GW science is hard
- Forward problem: Parameters → expected data
 - Template models: Time/frequency detector response
 - Noise models: PSD, transients
- Inverse problem: Data → inferred parameters
 - Point estimates: MLE (overlap maximization)
 - Credible regions: Bayesian posteriors
- Two motivating reasons for integration
 - We want to complement & improve traditional approach, not replace it
 - We want to streamline forward/inverse solutions & their interface

$$\theta \mapsto h$$

$$\begin{array}{c} h + n \mapsto \theta \\ h + n \mapsto p(\theta) \end{array}$$

Deep learning, demystified (only for this talk)

- Highly recursive nonlinear regression
 - Input $X \rightarrow$ neural network $N(X,P) \rightarrow$ output Y
- Training: Optimize N over parameters P
- Supervised vs unsupervised
 - \circ Training set is $\{(X,Y)\}$ vs training set is $\{X\}$
- Classification vs regression
 - Y is discrete vs Y is continuous

Deep learning, demystified (only for this talk)

- Highly recursive nonlinear regression
 - Input $X \rightarrow$ neural network $N(X,P) \rightarrow$ output Y
- Training: Optimize N over parameters P
- Supervised vs unsupervised
 - Training set is {(X,Y)} vs training set is {X}
- Classification vs regression
 - Y is discrete vs Y is continuous
- Statistical model for interpolation/fitting
 - Scales well with dimensionality of X & Y
 - o Y is fully analytic & fast to compute
 - dY/dX, etc. are also analytic & obtained for free

Deep learning in GW astronomy*

- Various LIGO-type applications
 - Glitch classification (Zevin et al.; Razzano & Cuoco; George et al.)
 - Denoising (Shen et al.; Wei & Huerta; Kulkarni & Cavaglia**)
 - Detector control systems (Vajente et al.**)
- LIGO-type signal classification & regression
 - Convolutional neural networks (George & Huerta; Gebhard et al.; Gabbard et al.)
 - Follow-on analyses (Fan et al.; Rebei et al.; Nakano et al.; Field et al.**)

*Apologies if there any omissions
**No manuscript yet (I think)

Deep learning in GW astronomy*

Various LIGO-type applications

*Apologies if there any omissions
**No manuscript yet (I think)

- o Glitch classification (Zevin et al.; Razzano & Cuoco; George et al.)
- Denoising (Shen et al.; Wei & Huerta; Kulkarni & Cavaglia**)
- Detector control systems (Vajente et al.**)
- LIGO-type signal classification & regression
 - Convolutional neural networks (George & Huerta; Gebhard et al.; Gabbard et al.)
 - o Follow-on analyses (Fan et al.; Rebei et al.; Nakano et al.; Field et al.**)
- Current classification work ≠ statistical signal detection
 - Test set prevalence & FPR are not representative (but see Gebhard et al. 2019)
- Current regression work ≠ Bayesian parameter estimation
 - Estimates/errors are statements about data sets, network architecture, training process
 - Have not been mapped to statements about signal model, noise model, astrophysical prior

Neural networks in forward models

- ROMAN (Chua, Galley & Vallisneri)
 - Reduced-order modeling with artificial neurons
 - Near-lossless compression of model with ROM
 - Source parameters → ROM coefficients
 - Shown on 4-parameter binary inspiral model
 - Speed/accuracy comparable to surrogates

Chua, Galley & Vallisneri (2019)

Neural networks in forward models

- ROMAN (Chua, Galley & Vallisneri)
 - Reduced-order modeling with artificial neurons
 - Near-lossless compression of model with ROM
 - Source parameters → ROM coefficients
 - Shown on 4-parameter binary inspiral model
 - Speed/accuracy comparable to surrogates
- Inference can be done in ROM domain.
 - Faster likelihood evaluations like ROQ
- Fast & accurate template derivatives
 - Fisher matrix estimates become trivial
 - Derivative-based sampling (MALA, HMC, etc.)
 - Derivative-based upsampling (Chua)

Chua (2019)

Neural networks as inverse models

- Inverse problem without forward models
 - Difficult: Essentially parametrized by noise
 - Unlikely to remove the need for posterior sampling
 - But solvable in principle with perfect training

$$\frac{\theta(h+n)}{p(\theta|h+n)}$$

Neural networks as inverse models

- Inverse problem without forward models
 - Difficult: Essentially parametrized by noise
 - Unlikely to remove the need for posterior sampling
 - But solvable in principle with perfect training
- PERCIVAL (Chua & Vallisneri)
 - Input: Detector data (in some representation)
 - Output: 1- or 2-parameter marginalized posteriors
 - No sampling performed during runtime
 - No posteriors computed during training
- Several potential applications
 - Fast sky localization
 - MCMC proposal kernels
 - Scoping out parameter estimation for LISA

Chua & Vallisneri (in review)

Neural networks as inverse models

- Inverse problem without forward models
 - Difficult: Essentially parametrized by noise
 - Unlikely to remove the need for posterior sampling
 - But solvable in principle with perfect training
- PERCIVAL (Chua & Vallisneri)
 - Input: Detector data (in some representation)
 - Output: 1- or 2-parameter marginalized posteriors
 - No sampling performed during runtime
 - No posteriors computed during training
- Several potential applications
 - Fast sky localization
 - MCMC proposal kernels
 - Scoping out parameter estimation for LISA

Chua & Vallisneri (in review)

Summary & references

- Deep learning is rapidly drawing interest in GW astronomy
- It is not a (completely) black box, and its limitations can be understood
- It can bring computational benefits when integrated with traditional methods
- A. J. K. Chua & M. Vallisneri, Learning Bayesian posteriors with neural networks for gravitational-wave inference, in review.
- A. J. K. Chua, Sampling from manifold-restricted distributions using tangent bundle projections, in press (2019).
- A. J. K. Chua, C. R. Galley & M. Vallisneri, Reduced-order modeling with artificial neurons for gravitational-wave inference, Phys. Rev. Lett. 122, 211101 (2019).